Menoufia University
Faculty of Engineering, Shebin El-Kom,
Basic Engineering science Department
Second Semester Examination, 2015-2016
Date of Exam: 15/6/2016

Subject: Introduction in Mathematical Physics
Code : BES 522
Year: Postgraduate students
Time Allowed : $\mathbf{3}$ hours
Total Marks: 100 marks

Answer the following questions

1) Evaluate the following integrals:
i) $\int_{0}^{a} x^{5} J_{2}(x) d x$
ii) $\int_{0}^{\infty} \sqrt{y} e^{-y^{3}} d y$
iii) $\int_{-1}^{1} x^{2} P_{L+1}(x) P_{L-1}(x) d x$
iv) $\int_{-\infty}^{\infty} x e^{-x^{2}} H_{n}(x) H_{m}(x) d x$
2) Show that the following special functions:
i) $\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n)!\sqrt{\pi}}{4^{n} n!}, n$ positive integer
ii) $J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x-x \cos x}{x}\right)$
iii) $\beta(m, n)=2 \int_{0}^{\frac{\pi}{2}}(\sin \theta)^{2 m-1}(\cos \theta)^{2 n-1} d \theta$
3) Expand the function $f(x)=x^{4}$ in Legendre polynomials.
4) Consider the Hermite Equation of order 5: $y^{\prime \prime}-2 t y^{\prime}+10 y=0$. Find the solution satisfying the initial conditions $a_{0}=1, a_{1}=0$.
5) Write the expansion of the hypergeometric function $\boldsymbol{F}(\boldsymbol{a}, \boldsymbol{b} ; \boldsymbol{c} ; \boldsymbol{z})$, and then prove that the following expansion: $\boldsymbol{F}\left(1 / 2,1 / 2 ; 3 / 2 ; z^{2}\right)=\frac{\sin ^{-1} z}{z}$.
6) Find the general solution of Bessel's differential equation
where $\boldsymbol{n} \neq 0, \pm 1, \pm 2, \ldots$

$$
z^{2} Y^{\prime \prime}+z Y^{\prime}+\left(z^{2}-n^{2}\right) \boldsymbol{Y}=0
$$

7) Let $u(x, t)$ represent the temperature of a very thin rod of length π, which is placed on the interval $0 \leq x \leq \pi$, at position x and time t. The PDE which governs the heat distribution is given by $\frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}=\frac{1}{\boldsymbol{k}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}$, where u, x, t and k are given in proper units. We further assume that both ends are insulated; that is, $u(0, t)=u(\pi, t)=0$ are impose "boundary condition" for $t \geq 0$. Given an initial temperature distribution of $u(x, 0)=2 \sin 4 x-11 \sin 7 x$, for $0 \leq x \leq \pi$, use the technique of separation of variables to find a (non-trivial) solution, $u(x, t)$.
8) Find the eigen values and eigen functions of the equation:

$$
y^{\prime \prime}-4 \lambda y^{\prime}+4 \lambda^{2} y=0, y(0)=0, y(1)+y^{\prime}(1)=0
$$

